Abstract
Many operating systems allow user programs to specify the protection level (inaccessible, read-only, read-write) of pages in their virtual memory address space, and to handle any protection violations that may occur. Such page-protection techniques have been exploited by several user-level algorithms for applications including generational garbage collection and persistent stores. Unfortunately, modern hardware has made efficient handling of page protection faults more difficult. Moreover, page-sized granularity may not match the natural granularity of a given application. In light of these problems, we reevaluate the usefulness of page-protection primitives in such applications, by comparing the performance of implementations that make use of the primitives with others that do not. Our results show that for certain applications software solutions outperform solutions that rely on page-protection or other related virtual memory primitives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.