Abstract

The present work assessed the protective effect of water-soluble feruloyl oligosaccharides (FSH), ferulic acid ester of oligosaccharides from wheat bran, against in vitro oxidative damage of normal human erythrocytes induced by a water-soluble free radical initiator, 2,2′-azobis-2-amidinopropane dihydrochloride (AAPH). In the whole process of AAPH-initiated oxidation, hemolysis occurred quickly after the lag time. The rate of hemolysis is correlated dose-dependently with AAPH concentration. Significant decrease in reduced glutathione (GSH) levels of erythrocyte with concomitant enhancement in oxidized gluthione (GSSG) levels was noticed. It was also observed that lipid and protein peroxidation of erythrocytes induced by AAPH was significantly increased, and scanning electron microscopy observations showed that AAPH induced obvious morphological alteration in the erythrocytes from a smooth discoid to an echinocytic form. FSH suppressed depletion of GSH, lipid peroxidation, and methaemoglobin and protein carbonyl group formation of erythrocytes in concentration- and time-dependent manners, remarkably delayed AAPH-induced hemolysis. Morphological changes to erythrocyte caused by AAPH were effectively protected by FSH. It was also observed that FSH could work synergistically with endogenous antioxidants in erythrocytes. These results indicated that FSH efficiently protected normal human erythrocytes against oxidative stress, and they could be used as a potential source of natural antioxidants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call