Abstract

The myocardial protective effects of crystalloid, blood, and Fluosol-DA-20% cardioplegia were compared by subjecting hypertrophied pig hearts to 3 hours of hypothermic (10 degrees to 15 degrees C), hyperkalemic (20 mEq/L) cardioplegic arrest and 1 hour of normothermic reperfusion. Left ventricular hypertrophy was created in piglets by banding of the ascending aorta, with increase of the left ventricular weight-body weight ratio from 3.01 +/- 0.2 gm/kg (control adult pigs) to 5.50 +/- 0.2 gm/kg (p less than 0.001). An in vivo isolated heart preparation was established in 39 grown banded pigs, which were divided into three groups to receive aerated crystalloid (oxygen tension 141 +/- 4 mm Hg), oxygenated blood (oxygen tension 584 +/- 41 mm Hg), or oxygenated Fluosol-DA-20% (oxygen tension 586 +/- 25 mm Hg) cardioplegic solutions. The use of crystalloid cardioplegia was associated with the following: a low cardioplegia-coronary sinus oxygen content difference (0.6 +/- 0.1 vol%), progressive depletion of myocardial creatine phosphate and adenosine triphosphate during cardioplegic arrest, minimal recovery of developed pressure (16% +/- 8%) and its first derivative (12% +/- 7%), and marked structural deterioration during reperfusion. Enhanced oxygen uptake during cardioplegic infusions was observed with blood cardioplegia (5.0 +/- 0.3 vol%), along with excellent preservation of high-energy phosphate stores and significantly improved postischemic left ventricular performance (developed pressure, 54% +/- 4%; first derivative of left ventricular pressure, 50% +/- 5%). The best results were obtained with Fluosol-DA-20% cardioplegia. This produced a high cardioplegia-coronary sinus oxygen content difference (5.8 +/- 0.1 vol%), effectively sustained myocardial creatine phosphate and adenosine triphosphate concentrations during the extended interval of arrest, and ensured the greatest hemodynamic recovery (developed pressure, 81% +/- 6%, first derivative of left ventricular pressure, 80% +/- 10%) and the least adverse morphologic alterations during reperfusion. It is concluded that oxygenated Fluosol-DA-20% cardioplegia is superior to oxygenated blood and especially aerated crystalloid cardioplegia in protecting the hypertrophied pig myocardium during prolonged aortic clamping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.