Abstract

Non-coding DNA comprises a very large proportion of the total genomic content in higher organisms, but its function remains largely unclear. Non-coding DNA sequences constitute the majority of peripheral heterochromatin, which has been hypothesized to be the genome's 'bodyguard' against DNA damage from chemicals and radiation for almost four decades. The bodyguard protective function of peripheral heterochromatin in genome defense has been strengthened by the results from numerous recent studies, which are summarized in this review. These data have suggested that cells and/or organisms with a higher level of heterochromatin and more non-coding DNA sequences, including longer telomeric DNA and rDNAs, exhibit a lower frequency of DNA damage, higher radioresistance and longer lifespan after IR exposure. In addition, the majority of heterochromatin is peripherally located in the three-dimensional structure of genome organization. Therefore, the peripheral heterochromatin with non-coding DNA could play a protective role in genome defense against DNA damage from ionizing radiation by both absorbing the radicals from water radiolysis in the cytosol and reducing the energy of IR. However, the bodyguard protection by heterochromatin has been challenged by the observation that DNA damage is less frequently detected in peripheral heterochromatin than in euchromatin, which is inconsistent with the expectation and simulation results. Previous studies have also shown that the DNA damage in peripheral heterochromatin is rarely repaired and moves more quickly, broadly and outwardly to approach the nuclear pore complex (NPC). Additionally, it has been shown that extrachromosomal circular DNAs (eccDNAs) are formed in the nucleus, highly detectable in the cytoplasm (particularly under stress conditions) and shuttle between the nucleus and the cytoplasm. Based on these studies, this review speculates that the sites of DNA damage in peripheral heterochromatin could occur more frequently and may be removed by repetitive elements in non-coding DNA through the formation of eccDNAs and expelled out of the nucleus to the cytoplasm via the NPC. Therefore, this review proposes that the genome and central protein-coding sequences are doubly protected by non-coding DNA in peripheral heterochromatin against DNA damage from radiation, which may be a novel protective role of non-coding DNA in genome defense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call