Abstract

IntroductionInjury and loss of the endothelial glycocalyx occur during the early phase of sepsis. We previously showed that antithrombin has a protective effect on this structure in vitro. Here, we investigated the possible protective effects of antithrombin in an animal model of sepsis. MethodsWistar rats were injected with endotoxin, and circulating levels of syndecan-1, hyaluronan, albumin, lactate and other biomarkers were measured in an antithrombin-treated group and an untreated control group (n = 6 in each group). Intravital microscopy was used to observe leukocyte adhesion, microcirculation, and syndecan-1 staining. ResultsThe circulating levels of syndecan-1 and hyaluronan were significantly reduced in the antithrombin-treated group, compared with the untreated controls. Lactate levels and albumin reduction were significantly attenuated in the antithrombin-treated group. Intravital microscopic observation revealed that both leukocyte adhesion and blood flow were better maintained in the treatment group. The syndecan-1 lining was disrupted after endotoxin treatment, and this derangement was attenuated by treatment with antithrombin. ConclusionAntithrombin effectively maintained microcirculation and vascular integrity by protecting the glycocalyx in a rat sepsis model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call