Abstract

Oxidative stress has been implicated in the pathophysiology of several neurodegenerative disorders. Numerous studies have reported that ethanol exposure produces reactive oxygen species (ROS), one of the best-known molecular mechanisms of ethanol neurotoxicity. We recently reported gamma-aminobutyric acid B1 receptor (GABAB1R)-dependent protection by anthocyanins against ethanol-induced apoptosis in prenatal hippocampal neurons. Here, we examined the effect of anthocyanin neuroprotection against ethanol in the hippocampus of the postnatal day-7 rat brain. After 4h of ethanol administration, either alone or together with anthocyanin, the expression of glutamate receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs)), intracellular signaling molecules, and various synaptic, inflammatory, and apoptotic markers was evaluated. The results suggest that anthocyanins significantly reversed the ethanol-induced inhibition of glutamatergic neurotransmission, synaptic dysfunction, GABAB1R activation, and neuronal apoptosis by stimulating the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/v-akt murine thymoma viral oncogene (Akt)/glycogen synthase kinase 3 beta (GSK3β) pathway in the hippocampus of postnatal rat brain. Anthocyanins also inhibited the ethanol-activated expression of phosphorylated c-Jun N terminal kinase (p-JNK), phospho-nuclear factor kappa B (p-NF-κB), cyclooxygenase 2 (COX-2), as well as attenuating neuronal apoptosis in the hippocampal CA1, CA3 and DG regions of the developing rat brain. Furthermore, anthocyanins increased cell viability, attenuated ethanol-induced PI3K-dependent ROS production, cytotoxicity, and caspase-3/7 activation in vitro. In conclusion, these results suggest that anthocyanins are beneficial against ethanol abuse during brain development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.