Abstract

We report photoinitiated chemical vapor deposition (piCVD), a gentle synthetic method for the preparation of ultrathin films (approximately 100 nm) of the hydrogel poly(hydroxyethyl methacrylate) (pHEMA). piCVD occurs near room temperature and requires only mild vacuum conditions. The deposited films swell rapidly and reversibly in buffer solution, and the swelling properties can be controlled via the deposition conditions. Analysis of the swelling data indicates that the mesh size of the hydrogel creates a selectively permeable coating. The mesh is large enough to allow small molecule analytes to permeate the film but small enough to prevent the transport of large biomolecules such as proteins. X-ray photoelectron spectroscopy (XPS) shows that the films decrease nonspecific adhesion of the protein albumin by nearly 8-fold over bare silicon. A dry process, piCVD is suitable for coating particles with diameters as small as 5 microm. The absence of solvents and plasmas in piCVD allows films to be directly synthesized on optode sensors without degradation of sensitivity or response time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call