Abstract
Pericytes play critical roles in the maintenance of brain vascular homeostasis. However, very little is currently known about how pericytes regulate ischemic stroke-induced brain injury. Inflammation is a key event in the pathobiology of stroke, in which the nod-like receptor protein-3 (NLRP3) inflammasome is involved in, triggering sterile inflammatory responses and pyroptosis. In the current study, an immortalized cell line derived from human brain vascular pericytes (HBVPs) was constructed, and it showed that HBVPs challenged with oxygen glucose deprivation (OGD) displays pronounced cellular excretion of LDH, IL-1β, IL-18 and increased PI positive staining. Mechanistically, upon OGD treatment, NLRP3 forms an inflammasome with its adaptor protein apoptosis-associated speck-like protein, containing a caspase recruitment domain (ASC) and caspase-1, manifested as much more co-stainings of NLRP3, ASC and Caspase-1 in HBVPs, accompanied by the increased protein levels of NLRP3, ASC, caspase-1 as well as the pyroptosis-associated protein gasdermin D (GSDMD). Intriguingly, GSDMD-N shuttled to the mitochondrial membrane triggered by OGD exposure, which promoted massive mitochondria-derived ROS generation. Importantly, the invention value of the specific targets was evaluated by treatment with bellidifolin, a kind of ketone compound derived from Swertia chirayita in traditional Tibetan medicine. It showed that bellidifolin exerts beneficial effects and attenuates the formation of NLRP3/ASC/Caspase-1 complex, thereby impeding GSDMD-N shuttling and resultant ROS generation, protecting against OGD-induced HBVPs pyroptosis. Overall, these findings unravel the potential mechanisms of pericyte injury induced by OGD and indicate that bellidifolin may exert its beneficial effects on pyroptosis, thus providing new therapeutic insights into stroke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.