Abstract

Green fluorescent protein (GFP) exhibits a rigid central β-barrel, formed by eleven β-strands with floppy loops spanning between the stands. Herein, we evaluate whether the rigid β-barrel may serve as a scaffold that can constrain the loops of a foreign protein, and thus its antigenicity. The spanning loops, site 6 of GFP, were engineered with RE cloning sites for inserting oligonucleotides corresponding to FcɛRI-binding sequence of human IgE. In a high-throughput format, shortened oligonucleotides encoding eight amino acid residues of the receptor-binding regions were inserted into site 6 of GFP by PCR, followed by enabling sequences for in vitro transcription and translation at the 5′ end. Antigenized C2-3 linker (C2-3L) was shown by immuno-blots with polyclonal anti-IgE under native gel electrophoresis and transfer. Recombinant antigenized GFP was expressed and purified to homogeneity by metal affinity column, followed by Sephacryl S-200 high resolution gel filtration. Hyperimmune sera from mice immunized with C2-3L antigenized GFP contain anti-IgE reactive with JW8 murine/human chimeric IgE. Further, elevated serum anti-C2-3L and affinity pure antibodies effectively inhibits binding of JW8 IgE to recombinant FcɛRIα, and desensitizes JW8 to rat RBL-2H3 transfected with human FcɛRIα. This observation raised the possibility that active IgE vaccine may be employed in raising active protective anti-IgE in allergic patients as an alternative to passive immunization with MAb-E25 anti-IgE. Taken together, GFP appears suitable protein scaffold for spanning/constraining the C2-3L of human IgE as active vaccine; and this technique may be generally employed for eliciting antibodies to specific B-cell epitopes of other proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call