Abstract

Protection of the gastric mucosa may be the result of either increased cellular resistance to injury (cytoprotection) or, alternatively, decreased exposure of mucosal cells to the damaging agent. To determine whether decreased exposure of mucosal cells to damaging agents plays a role in mucosal protection by 16,16-dm PGE2 or sodium thiosulfate, we estimated the intramucosal concentration of 22NaCl and measured its absorption from the gastric lumen into the systemic circulation 1 and 5 min after intragastric administration of hypertonic (25% w/v) 22NaCl. In an attempt to explain the differences observed, we also measured the net transmucosal water flux in control animals and rats pretreated with the protective agents. Administration of hypertonic NaCl rapidly (within 1 min) induced extensive hemorrhagic mucosal lesions that were significantly reduced by pretreatment with 16,16-dm PGE2 or sodium thiosulfate. Ultra-low temperature autoradiography indicated that luminal hypertonic 22NaCl penetrates the upper layers of the mucosa in relatively high concentrations (12.5% w/v) within 1 min but its concentration decreases rapidly and reached low levels (3.12% w/v) by 5 min. Absorption of NaCl from the gastric lumen into the systemic circulation 1 and 5 min after hypertonic NaCl was lower in both pretreatment groups than in the control. Net gastric transmucosal water flux (from serosa to mucosa) increased (P less than 0.05) from 100 +/- 2 in controls, to 1470 +/- 8 and 715 +/- 9 microliters in rats pretreated with 16,16-dm PGE2 and sodium thiosulfate, respectively. We conclude that 16,16-dm PGE2 and sodium thiosulfate protect the gastric mucosa against hypertonic NaCl, diminish mucosal penetration of NaCl, decrease mucosal absorption of NaCl, and significantly increase serosal to mucosal transmucosal water flux.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call