Abstract

Hydrocarbons (HCs) fulfil indispensable functions in insects, protecting against desiccation and serving chemical communication. However, the link between composition and function, and the selection pressures shaping HC profiles remain poorly understood. Beewolf digger wasps (Hymenoptera: Crabronidae) use an antennal gland secretion rich in linear unsaturated HCs to form a hydrophobic barrier around their defensive bacterial symbiont, protecting it from brood cell fumigation by toxic egg-produced nitric oxide (NO). Virtually identical HC compositions mediate desiccation protection and prey preservation from moulding in underground beewolf brood cells. It is unknown whether this composition presents an optimized adaptation to all functions, or a compromise due to conflicting selection pressures. Here, we reconstitute the NO barrier with single and binary combinations of synthetic linear saturated and unsaturated HCs, corresponding to HCs found in beewolves. The results show that pure alkanes as well as 3 : 1 mixtures of alkanes and alkenes resembling the composition of beewolf HCs form efficient protective barriers against NO, indicating that protection can be achieved by different mixtures of HCs. Since in vitro assays with symbiont cultures from different beewolf hosts indicate widespread NO sensitivity, HC-mediated protection from NO is likely important across Philanthini wasps. We conclude that HC-mediated protection of the symbiont from NO does not exert a conflicting selection pressure on the multifunctional HC profile of beewolves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call