Abstract

A recent study from our laboratory indicated additional tissue injury during rewarming of a cooled rabbit leg. Oxygen-derived free radicals were believed to play a role in such “rewarming injury.” Since free radicals may attack membrane phospholipids, we analyzed the phospholipid composition in the leg tissue during cooling and rewarming. Our results indicated significant breakdown of membrane phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine, with a corresponding accumulation of lysophosphatidylcholine and nonesterified fatty acids. Quinacrine, a phospholipase inhibitor, was able to preserve membrane phospholipids during rewarming of the cooled leg. Rewarming of cooled tissue was also accompanied by additional tissue injury, as evidenced by the increased release of lactic acid dehydrogenase and creatine kinase, as well as enhanced lipid peroxidation, as evidenced by increased malonaldehyde formation. Quinacrine reduced the release of these intracellular enzymes and decreased lipid peroxidation, suggesting its efficacy as a therapeutic agent against hypothermic injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call