Abstract

Yeast hemoglobin was discovered close to half a century ago, but its function has remained unknown. Herein, we report that this flavohemoglobin protects Saccharomyces cerevisiae from nitrosative stress. Deletion of the flavohemoglobin gene (YHB1) abolished the nitric oxide (NO)-consuming activity of yeast cells. Levels of protein nitrosylation were more than 10-fold higher in yhb1 mutant yeast than in isogenic wild-type cells after incubation with NO donors. Growth of mutant cells was inhibited by a nitrosative challenge that had little effect on wild-type cells, whereas the resistance of mutant cells to oxidative stress was unimpaired. Protection conferred by yeast flavohemoglobin against NO and S-nitrosothiols was seen under both anaerobic and aerobic conditions, consistent with a primary function in NO detoxification. A phylogenetic analysis indicated that protection from nitrosative stress is likely to be a conserved function among microorganismal flavohemoglobins. Flavohemoglobin is therefore a potential target for antimicrobial therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.