Abstract

Autism spectrum disorder (ASD) is an extremely predominant neurodevelopmental disorder expressed as impairment in reciprocal social interaction along with repetitive, restricted, and stereotyped behaviors. The protein tyrosine kinase inhibitor, tyrphostin AG126 (AG126), regulates the expression of several genes that play an important role in the development of neuroinflammatory disorders. Here, we investigate the possible effects of AG126 (5 mg/kg daily through intraperitoneal injection) on self-grooming, marble burying, and hot plate test results in BTBR T + Itpr3tf/J mice (BTBR is a model of autism). We also explore the effects of AG126 administration on IL-17 A, RORγt, T-bet, and IFN-γ production in CD4+ T cells and on CCR6+ chemokine receptors in splenic cells. We further investigated the effect of AG126 administration on the mRNA and protein expression of IL-17 A, RORγt, T-bet, IFN-γ, and NF-κB in the brain tissue. Our results demonstrate that treatment of BTBR mice with AG126 reduced repetitive self-grooming scores and lowered hot plate sensitivity potentials. Furthermore, AG126 administration also caused a substantial reduction of IL-17 A, RORγt, T-bet, and IFN-γ production in CD4+ T cells and on CCR6+ chemokine receptors in splenic cells. BTBR mice treated with AG126 also show decreased mRNA and protein expression levels of IL-17 A, RORγt, T-bet, IFN-γ, and NF-κB activation in brain tissue. Our results indicate that treating BTBR mice with AG126 leads to protection against neuroimmune dysfunction/dysregulation through the inhibition of cytokines and transcription factor signaling. This mechanism may be useful in the development of future therapies for neuroimmune disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call