Abstract
Diaryl tellurides effectively protect against peroxynitrite-mediated oxidation of dihydrorhodamine 123 (DHR), hydroxylation of benzoate, and nitration of 4-hydroxyphenylacetate (HPA). Bis(4-aminophenyl) telluride offered the most efficient protection against oxidation of DHR induced by peroxynitrite. Protection by this compound was approximately 3 times more effective than that afforded by its selenium analog, bis(4-aminophenyl) selenide, and 11 times more effective than selenomethionine. When peroxynitrite was infused to maintain a steady-state concentration, bis(4-aminophenyl) telluride in the presence of GSH, but neither bis(4-aminophenyl) telluride nor GSH alone, effectively inhibited the peroxynitrite-mediated hydroxylation of benzoate. The inhibition of nitration was most pronounced using bis(4-hydroxyphenyl) telluride, and this compound was ca. 3 times more effective than selenomethionine. Bis(4-aminophenyl) telluride also protected proteins in lysates from human skin fibroblasts from peroxynitrite-mediated nitration of tyrosine residues more effectively than selenomethionine. These data establish a potential biological or pharmacological role of organotellurium compounds in the defense against peroxynitrite.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.