Abstract

Protective surface coatings on an AZ91D magnesium alloy were formed in an atmosphere mixture of nitrogen and 1,1,1,2-tetrafluoroethane (HFC-134a). The surface composition and microstructure were characterized using X-ray diffraction analysis and scanning electron microscopy, respectively. The cross-section morphologies of the coatings show that an increase in conversion time results in an increase in the continuity and compactness of the coating generated on the surface of the AZ91D alloy. The corrosion resistance tests performed by immersion into 3.5% NaCl solutions were investigated by electrochemical measurements. The results showed that the coated samples had higher corrosion resistance than the uncoated alloy. On the other hand, the corrosion density of the coated samples decreased by increasing the conversion time by about two orders of magnitude, compared with the un-coated samples. This behaviour is attributed to the formation of a protective surface film constituted mainly for MgF2, together with other phases. The nature of these phases depends on the process conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.