Abstract

Potassium silicate coatings cured by calcium hydrogen phosphate and modified by fillers of Ti and SiO2 powders were prepared on K447A alloy at 120 °C. The influences of Ti, SiO2 and both powders on the oxidation behavior of the coated specimens were investigated at 1000 °C for 100 h in static air by thermogravimetry, SEM, XRD and EPMA. The bare K447A alloy suffered severe oxidation at 1000 °C, and the TGO was found to be composited of an outer layer of mixtures of NiCr2O4, CoAl2O4 and rutile TiO2, and an inner α-Al2O3 layer. The potassium silicate coating without filler showed local damages where formation and rapid rupture of bubbles occurred and consequently the local substrate was oxidized. The SiO2 powder in the coatings is more capable of reducing O diffusion thru the coatings than the Ti powder, while the latter is more effective in getting rid of bubble rupture than the former. Thus, the coating modified by 10 wt% Ti and 20 wt% SiO2 showed the best protective performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.