Abstract

Endogenous excitotoxins have been implicated in the degeneration of dopaminergic neurons in the substantia nigra compacta of patients with Parkinson's disease. One such agent quinolinic acid is an endogenous excitatory amino acid receptor agonist. This study examined whether an increased level of endogenous kynurenic acid, an excitatory amino acid receptor antagonist, can protect nigrostriatal dopamine neurons against quinolinic acid-induced excitotoxic damage. Nigral infusion of quinolinic acid (60 nmoles) or N-methyl- d- aspartate (15 nmoles) produced a significant depletion in striatal tyrosine hydroxylase activity, a biochemical marker for dopaminergic neurons. Three hours following the intraventricular infusion of nicotinylalanine (5.6 nmoles), an agent that inhibits kynureninase and kynurenine hydroxylase activity, when combined with kynurenine (450 mg/kg i.p.), the precursor of kynurenic acid, and probenecid (200 mg/kg i.p.), an inhibitor of organic acid transport, the kynurenic acid in the whole brain and substantia nigra was increased 3.3-fold and 1.5-fold respectively when compared to rats that received saline, probenecid and kynurenine. This elevation in endogenous kynurenic acid prevented the quinolinic acid-induced reduction in striatal tyrosine hydroxylase. However, 9 h following the administration of nicotinylalanine with kynurenine and probenecid, a time when whole brain kynurenic acid levels had decreased 12-fold, quinolinic acid injections produced a significant depletion in striatal tyrosine hydroxylase. Intranigral infusion of quinolinic acid in rats that received saline with kynurenine and probenecid resulted in a significant depletion of ipsilateral striatal tyrosine hydroxylase. Administration of nicotinylalanine in combination with kynurenine and probenecid also blocked N-methyl- d-aspartate-induced depletion of tyrosine hydroxylase. Tyrosine hydroxylase immunohistochemical assessment of the substantia nigra confirmed quinolinic acid-induced neuronal cell loss and the ability of nicotinylalanine in combination with kynurenine and probenecid to protect neurons from quinolinic acid-induced toxicity. The present study demonstrates that increases in endogenous kynurenic acid can prevent the loss of nigrostriatal dopaminergic neurons resulting from a focal infusion of quinolinic acid or N-methyl- d-aspartate. The strategy of neuronal protection by increasing the brain kynurenic acid may be useful in retarding cell loss in Parkinson's disease and other neurodegenerative diseases where excitotoxic mechanisms have been implicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.