Abstract
This paper describes an attitude control method to prevent the overturning of lunar and planetary landers. The proposed control method that is based on a variable-damping shock absorber for the landing gear is experimentally validated. Conventionally, the landing gear of lunar and planetary landers has a fixed shock attenuation parameter that is not used proactively for attitude control of the lander during the touchdown sequence. The proposed method suppresses any disturbance to the attitude of the lander by adjusting the damping coefficient of each landing leg independently, based on the angular velocity and displacement velocity of each landing leg. First, the control method for the variable damper is presented. Second, the result of a landing experiment conducted in a two-dimensional plane is shown. These results indicate that the proposed semi-active landing gear system is effective for preventing the overturning of the lander on inclined terrain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.