Abstract

We propose a network-coding based scheme to protect multiple bidirectional unicast connections against adversarial errors and failures in a network. The network consists of a set of bidirectional primary path connections that carry the uncoded traffic. The end nodes of the bidirectional connections are connected by a set of shared protection paths that provide the redundancy required for protection. Such protection strategies are employed in the domain of optical networks for recovery from failures. In this work we consider the problem of simultaneous protection against adversarial errors and failures. Suppose that n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> paths are corrupted by the omniscient adversary. Under our proposed protocol, the errors can be corrected at all the end nodes with 4n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> protection paths. More generally, if there are n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> adversarial errors and n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</sub> failures, 4n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> + 2n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</sub> protection paths are sufficient. The number of protection paths only depends on the number of errors and failures being protected against and is independent of the number of unicast connections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.