Abstract

Streptococcus pneumoniae infection is associated with very high morbidity and mortality throughout the world. Vaccines are an effective measure for the reduction of S. pneumoniae infection. In particular, protein vaccines are attracting increasing attention because of their good immunogenicity and wide coverage of serotypes. Therefore, identifying effective protein vaccine targets is important for protein vaccine development. SP0148 is a promising protein vaccine target for S. pneumoniae and is capable of reducing S. pneumoniae colonization in the nasopharynx of mice through the IL-17A pathway. However, the protective effects of SP0148 in fatal pneumococcal infection have not been evaluated. This study used subcutaneous and nasal immunization routes to systematically evaluate the protective effects of the SP0148 protein in fatal pneumococcal infection. Subcutaneous and nasal mucosal immunization with recombinant SP0148 protein produced effective immune protection against infection with a lethal dose of S. pneumoniae and significantly prolonged survival time and increased the survival rate of mice. Furthermore, nasal immunization with SP0148 induced mouse splenocytes to secrete high levels of the cytokines IFN-γ and IL-17A. Both recombinant SP0148 protein and its antiserum inhibited the adhesion of S.pneumoniae D39 to A549 human lung epithelial cells in a dose-dependent manner. In summary, SP0148 induced mice to produce protective immune responses to fatal S. pneumoniae infection, and our results could contribute to the accumulating data on the use of SP0148 protein vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call