Abstract

Carboxyl terminus of Hsp70-interacting protein (CHIP) is a critical ubiquitin ligase/cochaperone to reduce cardiac oxidative stress, inflammation, cardiomyocyte apoptosis and autophage etc. However, it is unclear whether overexpression of CHIP in the heart would exert protective effects against DOX-induced cardiomyopathy. Cardiac-specific CHIP transgenic (CHIP-TG) mice and the wild-type (WT) littermates were treated with DOX or saline. DOX-induced cardiac atrophy, dysfunction, inflammation, oxidative stress and cardiomyocyte apoptosis were significantly attenuated in CHIP-TG mice. CHIP-TG mice also showed higher survival rate than that of WT mice (40% versus 10%) after 10-day administration of DOX. In contrast, knockdown of CHIP by siRNA in vitro further enhanced DOX-induced cardiotoxic effects. Global gene microarray assay revealed that after DOX-treatment, differentially expressed genes between WT and CHIP-TG mice were mainly involved in apoptosis, atrophy, immune/inflammation and oxidative stress. Mechanistically, CHIP directly promotes ubiquitin-mediated degradation of p53 and SHP-1, which results in activation of ERK1/2 and STAT3 pathways thereby ameliorating DOX-induced cardiac toxicity.

Highlights

  • carboxyl terminus of Hsp70-interacting protein (CHIP) is known to be a dual-function cochaperone/ubiquitin ligase that is highly expressed in the heart and other tissue cells

  • We provide the first evidence that CHIP in vivo and in vitro protects against DOX-induced cardiac apoptosis, atrophy, inflammatory and oxidative stress resulting in prevention of cardiac dysfunction and improvement of mouse survival

  • The precise mechanisms whereby DOX induces myocardial injury have not been fully elucidated, it is widely accepted that the DOX induces cardiac injury via several mechanisms, including activation of ubiquitin-proteasome system, sarcomere reorganization, induction of proinflammatory cytokines, free radical generation and apoptotic cell death that are the typical changes in DOX-induced heart failure[23]

Read more

Summary

Introduction

CHIP is known to be a dual-function cochaperone/ubiquitin ligase that is highly expressed in the heart and other tissue cells. On the basis of previous findings, we postulated that increased CHIP levels would ameliorate DOX-induced cardiotoxicity. To test this hypothesis, wild-type (WT) and CHIP transgenic mice (CHIP-TG) were administered with a single dose of DOX (20 mg/kg; i.p.) for 5 or 10 days. We showed that cardiac-specific CHIP expression significantly improved cardiac function and prolonged survival in vivo by blocking DOX-induced apoptosis, inflammation and oxidative stress. The cardioprotective effects of CHIP against DOX toxicity were associated with ubiquitin-mediated degradation of p53, SHP-1 and preserved activation of ERK1/2 and STAT3 signaling pathways. These results suggest that CHIP may be a potential therapeutic target for the treatment of DOX-induced heart failure

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call