Abstract
Objective Ulcerative colitis (UC) is a long-lasting inflammatory disease of the colon. Epidemiological studies showed that the prevalence and incidence of UC are increasing worldwide in recent years. Neferine is a natural alkaloid isolated from Nelumbo nucifera Gaertn that exerts a variety of biological activities. This study was designed to evaluate the protective effect of neferine on dextran sulfate sodium (DSS)-induced experimental UC in mice. Materials and Methods In this experimental study, 4% DSS was used to induce a mice model of UC. Neferine (5 and 10 mg/kg) was administered by intraperitoneal injection (ip). Clinical symptoms and disease activity index (DAI) scores were recorded and calculated. Pathological changes of colon tissues were detected by Hematoxylin and Eosin (H&E) staining. The levels of inflammatory mediators were detected by ELISA kits. Western blotting and immunohistochemical analysis were used for the evaluation of protein expressions. Results Neferine treatment significantly alleviated DSS-induced UC by inhibiting weight loss, decreasing DAI scores, and alleviating the pathological changes in colon tissues. Furthermore, neferine significantly decreased serum levels of pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 and increased serum levels of anti-inflammatory cytokine IL-10. The increased myeloperoxidase (MPO) activity and nitric oxide (NO) in colon tissues were also inhibited. In addition, neferine significantly down-regulated inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and intercellular cell adhesion molecule-1 (ICAM-1) expression in colon tissues. ConclusionThese results provided evidence that neferine could protect against DSS-induced UC symptoms in an experimental mice model. This effect might be mediated through inhibition of inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.