Abstract
The recent literature on fair Machine Learning manifests that the choice of fairness constraints must be driven by the utilities of the population. However, virtually all previous work makes the unrealistic assumption that the exact underlying utilities of the population (representing private tastes of individuals) are known to the regulator that imposes the fairness constraint. In this paper we initiate the discussion of the \emph{mismatch}, the unavoidable difference between the underlying utilities of the population and the utilities assumed by the regulator. We demonstrate that the mismatch can make the disadvantaged protected group worse off after imposing the fairness constraint and provide tools to design fairness constraints that help the disadvantaged group despite the mismatch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.