Abstract

Long-term preservation of quantum coherence and entanglement is indispensable for practical quantum computation. We study the evolution of quantum coherence and genuine multipartite concurrence of extended Werner like states transmitted through correlated amplitude damping (AD), phase damping (PD) and depolarizing (DP) channels. The results show that the decay rate of coherence is curtailed in the presence of correlation between successive actions of the channel. It is shown that the fragility of genuine multipartite entanglement due to decoherence can be protected to some significant amount by using the correlated channels. In fact, for even qubit Werner like states, coherence and entanglement exhibit freezing phenomenon, in which it remains intact against decohering environment in perfectly correlated phase damping and depolarizing channels. For multipartite GHZ-class states in a perfectly correlated channel, it is shown that entanglement sudden death (ESD) is circumvented in amplitude damping channel, and there is an entanglement sudden birth (ESB) for odd qubit systems in depolarizing channel. Further, we have established analytical relation between coherence and entanglement for completely uncorrelated and fully correlated quantum channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.