Abstract

As a special kind of application of wireless sensor networks, Body Sensor Networks (BSNs) have broad perspectives especially in clinical caring and medical monitoring. Big data acquired from BSNs usually contain sensitive information, which are compulsory to be appropriately protected. However, previous methods overlooked the privacy protection issue, leading to privacy violation. In this paper, a differential privacy protection scheme for big data in body sensor network is proposed. We introduce the concept of dynamic noise thresholds which makes our scheme more suitable for processing big data. It can ensure privacy during the whole life cycle of the data, which makes privacy protection for big data in BSNs promising. Extensive experiments are conducted to outline the merits of our scheme. Experimental results reveal that our scheme has higher level of privacy protection. Even in the case where the attacker has full background knowledge, it still provides sufficient ambiguity, which ensures being unable to match people based on the ECG data characteristic so as to preserve the privacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.