Abstract

Complement component C3 (C3) plays a central role in microglial neurotoxicity following cerebral ischemia/reperfusion (I/R) injury. In this study, we focused on the role of nanoparticles loaded with C3 siRNA (NPsiC3) in inhibiting microglial neurotoxicity after brain (I/R) injury. NPsiC3 inhibited the hypoxia/re-oxygenation-induced increase in C3 expression in microglia in vitro. Importantly, treatment with NPsiC3 decreased C3b deposition on neurons and reduced microglia-mediated neuronal damage under hypoxia/re-oxygen conditions. Nanoparticles could effectively deliver C3-siRNA from the blood into ischemic penumbra across the blood-brain barrier (BBB) and significantly decrease C3 expression in microglia and ischemic brain tissue, while reducing the number of infiltrating inflammatory cells and the concentration of pro-inflammatory factors in the penumbra. Furthermore, NPsiC3 also prevented neuronal apoptosis, reduced the volume of the ischemic zone, and substantially improved functional recovery after I/R injury. Therefore, the NPsiC3-induced inhibition of microglial neurotoxicity represents a novel therapeutic strategy for treating brain I/R injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.