Abstract

The unavoidable coupling between a quantum state and its environment leads to decoherence. Weak measurements—indirectly observing a quantum state without disturbing it—are now shown to be a useful tool for reducing or even nullifying the effects of decoherence. Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence1. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death2,3. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing4, quantum cryptography5, quantum teleportation6,7,8 and quantum metrology9. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.