Abstract

The physiological significance of photosystem II (PSII) core protein phosphorylation has been suggested to facilitate the migration of oxidative damaged D1 and D2 proteins, but meanwhile the phosphorylation seems to be associated with the suppression of reactive oxygen species (ROS) production, and it also relates to the degradation of PSII reaction center proteins. To more clearly elucidate the possible protecting effect of the phosphorylation on oxidative damage of D1 protein, the degradation of oxidized D1 protein and the production of superoxide anion in the non-phosphorylated and phosphorylated PSII membranes were comparatively detected using the Western blotting and electron spin resonance spin-trapping technique, respectively. Obviously, all of three ROS components, including superoxide anion, hydrogen peroxide and hydroxyl radical are responsible for the degradation of oxidized D1 protein, and the protection of the D1 protein degradation by phosphorylation is accompanied by the inhibition of superoxide anion production. Furthermore, the inhibiting effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a competitor to Q(B), on superoxide anion production and its protecting effect on D1 protein degradation are even more obvious than those of phosphorylation. Both DCMU effects are independent of whether PSII membranes are phosphorylated or not, which reasonably implies that the herbicide DCMU and D1 protein phosphorylation probably share the same target site in D1 protein of PSII. So, altogether it can be concluded that the phosphorylation of D1 protein reduces the oxidative damage of D1 protein by decreasing the production of superoxide anion in PSII membranes under high light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call