Abstract
BackgroundFor the first time, differential attraction of pathogen vectors to vertebrate animals is investigated for novel repellents which when applied to preferred host animals turn them into non-hosts thereby providing a new paradigm for innovative vector control. For effectively controlling tsetse flies (Glossina spp.), vectors of African trypanosomosis, causing nagana, repellents more powerful than plant derived, from a non-host animal the waterbuck, Kobus ellipsiprymnus defassa, have recently been identified. Here we investigate these repellents in the field to protect cattle from nagana by making cattle as unattractive as the buck.Methodology/Principal findingsTo dispense the waterbuck repellents comprising guaiacol, geranylacetone, pentanoic acid and δ-octalactone, (patent application) we developed an innovative collar-mounted release system for individual cattle. We tested protecting cattle, under natural tsetse challenge, from tsetse transmitted nagana in a large field trial comprising 1,100 cattle with repellent collars in Kenya for 24 months. The collars provided substantial protection to livestock from trypanosome infection by reducing disease levels >80%. Protected cattle were healthier, showed significantly reduced disease levels, higher packed cell volume and significantly increased weight. Collars >60% reduced trypanocide use, 72.7% increase in ownership of oxen per household and enhanced traction power (protected animals ploughed 66% more land than unprotected). Land under cultivation increased by 73.4%. Increase in traction power of protected animals reduced by 69.1% acres tilled by hand per household per ploughing season. Improved food security and household income from very high acceptance of collars (99%) motivated the farmers to form a registered community based organization promoting collars for integrated tsetse control and their commercialization.Conclusion/SignificanceClear demonstration that repellents from un-preferred hosts prevent contact between host and vector, thereby preventing disease transmission: a new paradigm for vector control. Evidence that deploying water buck repellents converts cattle into non-hosts for tsetse flies—‘cows in waterbuck clothing’.
Highlights
Infectious diseases affecting livestock and human health that involve vector borne pathogens are a global problem and contribute directly to food insecurity and poverty, especially in subSaharan African (SSA) countries
We investigated the potential of non-host odors from un-preferred animals, i.e. not fed upon, related to cattle, the waterbuck (Kobus ellipsiprymnus defassa) which are common in tsetse habitats for their efficacy to protect cattle from tsetse flies that transmit nagana to cattle in Africa
This situation is further exacerbated by the emergence of new vector borne diseases, and difficulties with the control of old vector borne diseases such as malaria and other neglected tropical diseases (NTDs) e.g. trypanosomosis, generating urgent demands for new effective tools and strategies for the control of these pathogen vectors
Summary
Infectious diseases affecting livestock and human health that involve vector borne pathogens are a global problem and contribute directly to food insecurity and poverty, especially in subSaharan African (SSA) countries. The differential attraction of biting insects during the host location process involves the detection of ‘non-host’ compounds or repellents as well as ‘host’ attractants, especially during the discrimination between different hosts [1,2,3,4,5] and even individuals within a host species By understanding these complex interactions new novel semiochemicals with potential control applications can be uncovered. For effectively controlling tsetse flies (Glossina spp.), vectors of African trypanosomosis, causing nagana, repellents more powerful than plant derived, from a non-host animal the waterbuck, Kobus ellipsiprymnus defassa, have recently been identified We investigate these repellents in the field to protect cattle from nagana by making cattle as unattractive as the buck
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.