Abstract

We propose a protected qubit based on a modular array of superconducting islands connected by semiconductor Josephson interferometers. The individual interferometers realize effective $\cos2\phi$ elements that exchange `pairs of Cooper pairs' between the superconducting islands when gate-tuned into balance and frustrated by a half flux quantum. If a large capacitor shunts the ends of the array, the circuit forms a protected qubit because its degenerate ground states are robust to offset charge and magnetic field fluctuations for a sizable window around zero offset charge and half flux quantum. This protection window broadens upon increasing the number of interferometers if the individual elements are balanced. We use an effective spin model to describe the system and show that a quantum phase transition point sets the critical flux value at which protection is destroyed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.