Abstract
A photonic dimer composed of two evanescently coupled high-Q microresonators is a fundamental element of multimode soliton lattices. It has demonstrated a variety of emergent nonlinear phenomena, including supermode soliton generation and soliton hopping. Here, we present another aspect of dissipative soliton generation in coupled resonators, revealing the advantages of this system over conventional single-resonator platforms. Namely, we show that the accessibility of solitons markedly varies for symmetric and antisymmetric supermode families. Linear measurements reveal that the coupling between transverse modes, giving rise to avoided mode crossings, can be substantially suppressed. We explain the origin of this phenomenon and show its influence on the dissipative Kerr soliton generation in lattices of coupled resonators of any type. Choosing an example of the topological Su-Schrieffer-Heeger model, we demonstrate how the edge state can be protected from the interaction with higher-order modes, allowing for the formation of topological Kerr solitons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.