Abstract

Anaplastic thyroid carcinoma (ATC) is one of the most aggressive types of cancer characterized by complete refractoriness to multimodal treatment approaches. Therapeutic strategies based on the simultaneous use of proteasome inhibitors and death receptor ligands have been shown to induce apoptosis in several tumor types but have not yet been explored in ATC. The aim of this study was to investigate the ability of the proteasome inhibitor Bortezomib to induce apoptosis in ATC cell lines. Bortezomib was used as a single agent or in combination with TNF-related apoptosis-induced ligand (TRAIL), a member of the TNF family that selectively induces tumor cell apoptosis. The molecular effects of Bortezomib were investigated by analyzing the expression of key regulators of cell cycle and apoptosis and the activation of different apoptotic pathways. Bortezomib induced apoptosis in ATC cells at doses achieved in the clinical setting, differently from conventional chemotherapeutic agents. Simultaneous treatment with low doses of Bortezomib and TRAIL had a synergistic effect in inducing massive ATC cell apoptosis. Bortezomib increased the expression of cytotoxic TRAIL receptors, p21 (WAF/CIP1) and proapoptotic second mitochondria-derived activator of caspases/direct inhibitor of apoptosis binding protein with low pI, and reduced the expression of antiapoptotic mediators such as cellular Fas-associated death domain-like IL-1beta converting enzyme inhibitory protein, Bcl-2, Bcl-X(L), and inhibitor of apoptosis-1, thus resulting in cell death induction through the mitochondrial apoptotic pathway. The combination of proteasome inhibitors and TRAIL synergizes to induce the destruction of chemoresistant neoplastic thyrocytes and could represent a promising therapeutic strategy for the treatment of anaplastic thyroid carcinoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.