Abstract

Recent findings suggest that a defect in the ubiquitin-proteasome system plays an important role in the pathogenesis of Parkinson's disease (PD). A previous report (McNaught et al. 2004) demonstrated that rats systemically injected with proteasome inhibitors exhibited PD-like clinical symptoms and pathology. However, because these findings have not been consistently replicated, this model is not commonly used to study PD. We used medaka fish to test the effect of systemic administration of proteasome inhibitors because of the high level of accessibility of the cerebrospinal fluid in fish. We injected lactacystin or epoxomicin into the CSF of medaka. With proteasome inhibition in the medaka brain, selective dopaminergic and noradrenergic cell loss was observed. Furthermore, treated fish exhibited reduced spontaneous movement. Treatment with proteasome inhibitors also induced the formation of inclusion bodies resembling Lewy bodies, which are characteristic of PD. Treatment with 6-OHDA also induced dopaminergic cell loss but did not produce inclusion bodies. These findings in medaka are consistent with previous results reporting that non-selective proteasome inhibition replicates the cardinal features of PD: locomotor dysfunction, selective dopaminergic cell loss, and inclusion body formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.