Abstract

Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K-ATPase α1 and α3 subunits and increased the expression of WEE1 in HeLa cells. Antibodies against Na, K-ATPase α1 and α3 subunits alone or combinated with arenobufagin also inhibited the activity of proteasome. Furthermore, the expression of the possible intermediate proteins ataxin-1 and translationally-controlled tumor protein was increased in HeLa cells treated with arenobufagin by flow cytometry analysis, respectively. These results indicated that arenobufagin might directly bind with Na, K-ATPase α1 and α3 subunits and the inhibitive effect of arenobufagin on proteasomal activity of HeLa cells might be related to its binding with Na, K-ATPase.

Highlights

  • Cardiac steroids /Cardiac glycosides, which are the compounds used for treating cardiac failure, display strong anti-cancer activity to induce activation of cell death or impairment of cell proliferation by epidemiological data as well as in vitro and in vivo studies, and so it is possible to develop cardiac steroids /cardiac glycosides as anti-cancer agents

  • The expression of the possible intermediate proteins ataxin-1 and translationallycontrolled tumor protein was increased in HeLa cells treated with arenobufagin by flow cytometry analysis, respectively. These results indicated that arenobufagin might directly bind with Na, K-ATPase α1 and α3 subunits and the inhibitive effect of arenobufagin on proteasomal activity of HeLa cells might be related to its binding with Na, K-ATPase

  • Arenobufagin could effectively inhibit the growth of HeLa cells

Read more

Summary

Introduction

Cardiac steroids /Cardiac glycosides, which are the compounds used for treating cardiac failure, display strong anti-cancer activity to induce activation of cell death or impairment of cell proliferation by epidemiological data as well as in vitro and in vivo studies, and so it is possible to develop cardiac steroids /cardiac glycosides as anti-cancer agents. Promising compounds such as Anvirzel and UNBS1450 were in clinical trials in U.S.A and Belgium, respectively. While preserving potent anti-proliferative properties patients with advanced solid tumors, minimal cardiotoxicity of UNBS1450 was found in clinical trials [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call