Abstract

The catalytic mechanism of the 20S proteasome from the archaebacterium Thermoplasma acidophilum has been analyzed by site-directed mutagenesis of the beta subunit and by inhibitor studies. Deletion of the amino-terminal threonine or its mutation to alanine led to inactivation of the enzyme. Mutation of the residue to serine led to a fully active enzyme, which was over ten times more sensitive to the serine protease inhibitor 3,4-dichloroisocoumarin. In combination with the crystal structure of a proteasome-inhibitor complex, the data show that the nucleophilic attack is mediated by the amino-terminal threonine of processed beta subunits. The conservation pattern of this residue in eukaryotic sequences suggests that at least three of the seven eukaryotic beta-type subunit branches should be proteolytically inactive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.