Abstract

The molecular mechanisms of the atheroprotective effect evoked by hormone replacement therapy in postmenopausal women is not well known. Recently, we have demonstrated enhanced activity of the ubiquitin-proteasome system in human atherosclerotic plaques and evidenced that it is associated with inflammatory-induced plaque rupture. Therefore, we hypothesized that hormone replacement therapy may exert the cardioprotective effects modulating the ubiquitin-proteasome activity. To investigate this possibility, this study examined the differences in inflammatory infiltration, as well as ubiquitin-proteasome activity, between asymptomatic carotid plaques of postmenopausal women with and without concomitant hormone replacement therapy. Plaques were obtained from 20 postmenopausal women treated with hormone replacement therapy (current users) and 32 nontreated women (never-users) enlisted to undergo carotid endarterectomy for extracranial high-grade (>70%) internal carotid artery stenosis. Plaques were analyzed for macrophages, T lymphocytes, human leukocyte antigen-DR+ cells, ubiquitin-proteasome system, nuclear factor kappaB, inhibitor of nuclear factor kappaBbeta, tumor necrosis factor-alpha, nitrotyrosine, matrix metalloproteinase-9, and collagen content (immunohistochemistry and ELISA). Compared with plaques from current users, plaques from never-users had more macrophages, T lymphocytes, and human leukocyte antigen-DR+ cells (P<0.001); more ubiquitin-proteasome activity, tumor necrosis factor-alpha, and nuclear factor kappaB (P<0.001); and more nitrotyrosine and matrix metalloproteinase-9 (P<0.001), along with a lesser collagen content and inhibitor of nuclear factor kappaBbeta levels (P<0.001). This study supports the hypothesis that hormone replacement therapy inhibits plaque ubiquitin-proteasome activity by decreasing oxidative stress generation in postmenopausal women. This effect, in turn, might contribute to plaque stabilization by inhibiting the activation of nuclear factor kappaB-dependent inflammation, responsible for plaque rupture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.