Abstract

We report the isolation of a highly active (k(cat)/K(M) approximately 10(5) M(-1)s(-1)) variant of the E. coli endopeptidase OmpT that selectively hydrolyzes peptides after 3-nitrotyrosine while effectively discriminating against similar peptides containing unmodified tyrosine (160-fold), sulfotyrosine (3600-fold), phosphotyrosine (>8000-fold), and phosphoserine (>8000-fold). The isolation of endopeptidase variants that can discriminate between substrates based on the post-translational modification of Tyr was made possible by implementing a multicolor flow cytometric assay for the screening of large mutant libraries. For the multicolor assay, a desired selection substrate was used simultaneously with multiple counterselection fluorescent substrates to isolate rare enzyme variants that displayed finely tuned substrate specificity. This work demonstrates that enzymes with exquisite selectivity can be isolated from large libraries using appropriate high throughput screening approaches and constitutes a critical step toward the production of a 3-nitrotyrosine-specific protease useful for proteomic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.