Abstract

The in vitro metabolic degradation of human interleukin (IL)-1beta was studied using lysates of rat kidney lysosomes, and proteases involved in the degradation were identified. In the study of IL-1beta degradation, fluorescein isothiocyanate (FITC)-labeled IL-1beta was used as a substrate. The maximal degradation of IL-1beta occurred at pH 3.0, and the reaction was proportional to the lysosomal protein concentration and time of incubation. The degradation was stimulated by the addition of L-cysteine. The reaction was not inhibited by phenylmethanesulfonyl fluoride or EDTA, indicating that serine proteases or metalloproteases do not play a major role in the degradation process. N-Ethylmaleimide, leupeptin and E-64, inhibitors of thiol protease, inhibited the degradation of IL-1beta, by 59%-70%. Pepstatin A, an inhibitor of carboxyl protease, inhibited the degradation by 58%. Combinations of thiol and carboxyl protease inhibitors nearly completely inhibited the degradation. Bio-Gel P-10 gel filtration chromatography of in vitro reactants confirmed the ability of lysosomal proteases to degrade IL-1beta and revealed four to five peaks of degradation products. Taken together, these results indicate that thiol protease and carboxyl protease play an important role in the IL-1beta degradation process by kidney lysosomes. Leupeptin and E-64 dose dependently inhibited both cathepsin B and cathepsin L activities, and pepstatin A strongly inhibited cathepsin D activity in rat kidney lysosomes. The present results suggest that cathepsin B, cathepsin L, and cathepsin D in kidney lysosomes are involved in the metabolic degradation of human IL-1beta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call