Abstract

Regulatory proteases modulate proteomic dynamics with a spectrum of specificities against substrate proteins. Predictions of the substrate sites in a proteome for the proteases would facilitate understanding the biological functions of the proteases. High-throughput experiments could generate suitable datasets for machine learning to grasp complex relationships between the substrate sequences and the enzymatic specificities. But the capability in predicting protease substrate sites by integrating the machine learning algorithms with the experimental methodology has yet to be demonstrated. Factor Xa, a key regulatory protease in the blood coagulation system, was used as model system, for which effective substrate site predictors were developed and benchmarked. The predictors were derived from bootstrap aggregation (machine learning) algorithms trained with data obtained from multilevel substrate phage display experiments. The experimental sampling and computational learning on substrate specificities can be generalized to proteases for which the active forms are available for the in vitro experiments. http://asqa.iis.sinica.edu.tw/fXaWeb/

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.