Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. Studies have shown that Mtb uses a variety of mechanisms to evade host immunity. Secreted Mtb proteins such as Type VII secretion system substrates have been characterized for their ability to modulate anti-Mtb immunity; however, studies of other pathogens such as Salmonella Typhi and Staphylococcus aureus have revealed that outer membrane proteins can also interact with the innate and adaptive immune system. The Mtb outer membrane proteome has received relatively less attention due to limited techniques available to interrogate this compartment. We filled this gap by deploying protease shaving and quantitative mass spectrometry to identify Mtb outer membrane proteins which serve as nodes in the Mtb-host interaction network. These analyses revealed several novel Mtb proteins on the Mtb surface largely derived from the PE/PPE class of Mtb proteins, including PPE18, a component of a leading Mtb vaccine candidate. We next exploited the localization of PPE18 to decorate the Mtb surface with heterologous proteins and deliver these surface-engineered Mtb to the phagosome. Together, these studies reveal potential novel targets for new Mtb vaccines as well as facilitate new approaches to study difficult to study cellular compartments during infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.