Abstract

Camelid heavy-chain antibody variable domains (VHHs) are emerging as potential antimicrobial reagents. We have engineered a previously isolated VHH (FlagV1M), which binds Campylobacter jejuni flagella, for greater thermal and proteolytic stability. Mutants of FlagV1M were obtained from an error-prone polymerase chain reaction library that was panned in the presence of gastrointestinal (GI) proteases. Additional FlagV1M mutants were obtained through disulfide-bond engineering. Each approach produced VHHs with enhanced thermal stability and protease resistance. When the beneficial mutations from both approaches were combined, a hyperstabilized VHH was created with superior stability. The hyperstabilized VHH bound C. jejuni flagella with wild-type affinity and was capable of potently inhibiting C. jejuni motility in assays performed after sequential digestion with three major GI proteases, demonstrating the remarkable stability imparted to the VHH by combining our engineering approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.