Abstract

Pupae inside cocoons rarely suffer from disease. It is apparent that some factors in the cocoon exert antimicrobial effects whereby the pupae inside can be protected from microbial infection. In the present study, we investigated the expression of cocoon protease inhibitors using immunoblotting and activity staining. Enzymatic hydrolysis of cocoon proteins in vitro was performed to characterize their roles in protecting the cocoon from microbial proteases. We found that some protease inhibitors, particularly trypsin inhibitor-like (TIL)-type protease inhibitors, can be secreted into the cocoon layer during the spinning process, thereby providing effective protection to the cocoon and pupa by inhibiting the extracellular proteases that can be secreted by pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call