Abstract

Four protease inhibitor antiviral agents (ritonavir, indinavir, nelfinavir, saquinavir) were evaluated as in vitro inhibitors of the activity of six human cytochromes using an in vitro model based on human liver microsomes. Ritonavir was a highly potent inhibitor of P450-3A activity (triazolam hydroxylation), having inhibitory potency slightly less than ketoconazole. Indinavir was also a potent 3A inhibitor, while nelfinavir and saquinavir were less potent. Ritonavir had high inhibition potency against cytochrome P450-2C9 (tolbutamide hydroxylation), -2C19 (S-mephenytoin hydroxylation), and -2D6 (dextromethorphan O-demethylation and desipramine hydroxylation), while the other protease inhibitors had one or more orders of magnitude lower inhibitory activity against these reactions. None of the protease inhibitors had important inhibitory potency against P450-1A2 (phenacetin O-deethylation) or -2E1 (chlorzoxazone hydroxylation). Thus, among available protease inhibitors, ritonavir carries the highest risk of incurring drug interactions due to inhibition of cytochrome P450 activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.