Abstract

Secreted proteases play integral roles in sexual reproduction in a broad range of taxa. In the genetic model Drosophila melanogaster, these molecules are thought to process peptides and activate enzymes inside female reproductive tracts, mediating critical postmating responses. A recent study of female reproductive tract proteins in the cactophilic fruit fly Drosophila arizonae, identified pervasive, lineage-specific gene duplication amongst secreted proteases. Here, we compare the evolutionary dynamics, biochemical nature, and physiological significance of secreted female reproductive serine endoproteases between D. arizonae and its congener D. melanogaster. We show that D. arizonae lower female reproductive tract (LFRT) proteins are significantly enriched for recently duplicated secreted proteases, particularly serine endoproteases, relative to D. melanogaster. Isolated lumen from D. arizonae LFRTs, furthermore, exhibits significant trypsin-like and elastase-like serine endoprotease activity, whereas no such activity is seen in D. melanogaster. Finally, trypsin- and elastase-like activity in D. arizonae female reproductive tracts is negatively regulated by mating. We propose that the intense proteolytic environment of the D. arizonae female reproductive tract relates to the extraordinary reproductive physiology of this species and that ongoing gene duplication amongst these proteases is an evolutionary consequence of sexual conflict.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.