Abstract

BackgroundRespiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. Furthermore, monitoring the progression of infections after intervention enables ‘course correction’ in cases where initial treatments are ineffective, avoiding unnecessary drug dosing that can contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow readouts, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments.MethodsHere we describe a nanoparticle system that detects P. aeruginosa lung infections by sensing host and bacterial protease activity in vivo, and that delivers a urinary detection readout. One protease sensor is comprised of a peptide substrate for the P. aeruginosa protease LasA. A second sensor designed to detect elastases is responsive to recombinant neutrophil elastase and secreted proteases from bacterial strains.FindingsIn mice infected with P. aeruginosa, nanoparticle formulations of these protease sensors—termed activity-based nanosensors (ABNs)—detect infections and monitor bacterial clearance from the lungs over time. Additionally, ABNs differentiate between appropriate and ineffective antibiotic treatments acutely, within hours after the initiation of therapy.InterpretationThese findings demonstrate how activity measurements of disease-associated proteases can provide a noninvasive window into the dynamic process of bacterial infection and resolution, offering an opportunity for detecting, monitoring, and characterizing lung infections.FundNational Cancer Institute, National Institute of Environmental Health Sciences, National Institutes of Health, National Science Foundation Graduate Research Fellowship Program, and Howard Hughes Medical Institute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.