Abstract

Activation of cell signaling by thrombin through Protease Activated Receptor-1 (PAR-1) represents one important interface between blood coagulation and cell activation in response to injury and inflammation. In the context of cancer, PAR-1 has been suggested to promote tumor growth through mechanisms coupled to tumor cell proliferation, tumor cell migration, and the development of a supportive tumor stroma. Consistent with this view, both tumor cells and stromal cells express high levels of PAR-1, and elevated PAR-1 expression has been correlated with a poor prognosis across several tumor types. In the current studies, we tested the hypothesis that PAR-1 is a critical driver of tumorigenesis and tumor growth using murine models of genetically-induced prostate and intestinal tumor growth. To define the role of PAR-1 in prostate tumor progression, we interbred mice expressing the TRAMP transgene (transgenic adenocarcinoma of the mouse prostate; SV40 Large T antigen under the control of a probasin promoter) to PAR-1-deficient mice (PAR-1-/-) in order to generate male TRAMP mice with and without PAR-1 expression for detailed analyses of prostate tumor growth. Surprisingly, prostate tumors harvested from PAR-1-/- mice were significantly larger than those harvested from PAR-1+/+ mice. In order to begin to address the PAR-1 expressing cellular compartments responsible for prostate tumor inhibition, we subcutaneously inoculated immunocompetent C57Bl/6-derived PAR-1-/- and control mice with tumor cells derived from a C57Bl/6 TRAMP mouse. TRAMP-derived tumors grew indistinguishably in PAR-1-/- and control mice, suggesting that stromal-cell associated PAR-1 is dispensable for prostate tumor growth. We next tested the effect of tumor cell-intrinsic inhibition of PAR-1 in TRAMP tumor cells by viral transduction with a construct containing an shRNA against murine PAR-1 in parallel to a non-specific shRNA construct. Diminishing tumor cell-associated PAR-1 expression resulted in significantly more rapid tumor growth in vivo. In order to better define the role of tumor cell-intrinsic PAR-1 we harvested TRAMP tumor cells from a PAR-1 deficient mouse and grew these cells in vitro. We transduced these PAR-1-deficient prostate tumor cells with viral vectors conferring expression of WT murine PAR-1 (PAR-1+), a PAR-1 mutant lacking the thrombin cleavage (R41A mutant) or empty vector (PAR-1-). PAR-1- cells grew robustly and similarly to the parental cells in vitro with a doubling time of approximately 48 hours. Cells expressing the R41A mutant PAR-1 also grew robustly and similarly to PAR-1 deficient cells. However, PAR-1+ cells failed to show any signs of cell proliferation over the span of a 4 day observation period. Furthermore, PAR-1 expression dramatically altered the ability of TRAMP cells to demonstrate signs of cell spreading as measured by the frequency of pseudopodia per cell. As a means of determining the role of PAR-1 in tumorigenesis and tumor growth in another spontaneously occurring setting, we interbred PAR-1-/- mice with APCMin/+ mice genetically predisposed to intestinal adenoma formation due to loss of heterozygosity of the tumor suppressor adenomatous polyposis coli gene. Blinded quantitative histological analyses of the intestinal tracts of PAR-1-/- and PAR-1+/+ APCMin/+ mice revealed that PAR-1 deficiency resulted in a significant 2-fold increase in the number of adenomas observed. Furthermore, the adenomas observed in PAR-1-/- mice were significantly larger based on morphometric analyses of adenoma surface area in histological sections. In sum, these data demonstrate a surprising and unexpected role for PAR-1 in the inhibition of tumor growth in the context of two distinct tumor types. DisclosuresNo relevant conflicts of interest to declare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call