Abstract

Protamine addition to the solution bathing the mucosal side of Necturus gallbladder epithelium (25-100 mg/l) caused depolarization of both cell membranes, a mucosa-negative change in transepithelial voltage, an increase in the apical membrane resistance (Ra) followed by a decrease, and a monotonic increase in transepithelial resistance (Rt). In protamine (25 mg/l), the change in apical membrane voltage elicited by elevating mucosal solution [K+] from 2.5 to 92.5 mM was reduced from 66 +/-2 to 38 +/- 5 mV (P less than 0.001). The K+-induced fall in Ra was also reduced in protamine. These effects could also be elicited by elevating mucosal solution [K+] simultaneously with the addition of protamine and by transient addition of protamine during exposure to the high K+ medium. The effect of protamine on the electrodiffusive Cl- permeability of the apical membrane (PCl) was studied both in control and forskolin-treated tissues. In the absence of forskolin, the hyperpolarization of Vmc produced by lowering mucosal [Cl-] to 10 mM was reversed to a small depolarization; in forskolin, the initial depolarization produced by lowering [Cl-] was significantly increased. Finally, exposure to protamine in the absence of forskolin produced an initial fall in intracellular Cl- activity. Our results indicate that protamine decreases apical membrane K+ permeability and increases apical membrane PCl. The time course of the effects of protamine suggests the possibility of an initial effect on surface potential, followed by secondary actions mediated by intracellular events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call