Abstract

An increase in distributed small-scale generation and storage in residential prosumer households requires an understanding of how the household-controlled operation of these distributed technologies differ from a system-optimal utilization. This paper aims at investigating how residential photovoltaic (PV)-battery systems are operated, given different assumed incentives, and whether or not a prosumer induced operational pattern differs from what is desirable from a total electricity system point of view. The work combines a household optimization model that minimizes the annual household electricity bill for two price zones in southern Sweden with a dispatch model for the northern European electricity supply system. The results show significant differences in the charging and discharging patterns of residential batteries. A household annual electricity cost minimization gives many hours in which only a fraction of the battery capacity is used for charging and discharging, mainly driven by incentives to maximize self-consumption of PV-generated electricity. In contrast, in a total electricity system operational cost minimization larger fractions of the available battery capacity are utilized within single hours. In the total system optimization case, the batteries are charged and discharged less frequently and the energy turnover in the batteries is only half that of the household optimization case. For all the cases studied, the hourly electricity price provides only a limited incentive for households to operate their batteries in a system-optimal manner.

Highlights

  • IntroductionThe rapidly decreasing cost of photovoltaic (PV) panels together with their characterization as modular (and thereby, scalable) enable electricity end-users of different sizes to transform from purely passive consumers to so-called “prosumers” (a fusion of the terms “producers” and “consumers”), who are capable of generating electricity on their own property (Schleicher-Tappeser, 2012)

  • The rapidly decreasing cost of photovoltaic (PV) panels together with their characterization as modular enable electricity end-users of different sizes to transform from purely passive consumers to so-called “prosumers”, who are capable of generating electricity on their own property (Schleicher-Tappeser, 2012)

  • We investigate the extent to which unregulated prosumer patterns differ from the overall system optimal utilization of PV and battery systems, and whether it is of value to incentivize a certain behavior on the consumer side

Read more

Summary

Introduction

The rapidly decreasing cost of photovoltaic (PV) panels together with their characterization as modular (and thereby, scalable) enable electricity end-users of different sizes to transform from purely passive consumers to so-called “prosumers” (a fusion of the terms “producers” and “consumers”), who are capable of generating electricity on their own property (Schleicher-Tappeser, 2012). This possibility for microgeneration in private households has extended the activities of electricity customers from purchasing electricity from utilities, to taking a more active role in the production and storage of electricity. We investigate the extent to which unregulated prosumer patterns differ from the overall system optimal utilization of PV and battery systems, and whether it is of value to incentivize a certain behavior on the consumer side

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call