Abstract

The purpose of this study was to determine the magnetic resonance (MR) safety aspects and artifacts for three different heart valve prostheses and two different annuloplasty rings that have not been evaluated previously in association with the 1.5-T MR environment. Ex vivo testing was performed using previously described techniques for the evaluation of magnetic field interactions (deflection angle and torque), heating (gel-filled phantom and fluoroptic thermometry; 15 min of MR imaging at a whole body-averaged specific absorption rate of 1.2 W/kg), and artifacts (using T1-weighted, spin echo, and gradient echo pulse sequences). One heart valve prosthesis and one annuloplasty ring showed no magnetic field interactions. Two heart valve prostheses and one annuloplasty ring displayed relatively minor magnetic field interactions (i.e., deflection angle < or = 6 degrees, torque, +1). Heating was < or = 0.7 degrees C for the five different implants. Artifacts varied depending on the amount and type of metal used to make the implants. For the three heart valve prostheses and two annuloplasty rings, the lack of substantial magnetic field interactions and relatively minor hearing indicated that MR procedures may be conducted safetly in patients with these implants using MR systems operating with static magneticfields of 1.5 T or less. Notably, these findings essentially apply to 54 different heart valve prostheses and 37 different annuloplasty rings (i.e., based on the various models and sizes available for these implants).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.